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Abstract 

This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable 
contextual models that integrate structural equation models (with multiple indicators) and latent-variable 
multilevel models. These models simultaneously control for and unconfound unreliability due to 
measurement error at the individual (L1) and group (L2) levels, and sampling error in the aggregation of 
L1-characteristics to form L2-constructs. We propose a 2x2 taxonomy of models that are latent or manifest 
in relation to sampling items (measurement error) and sampling of persons (sampling error), and discuss 
when different models might be most useful. We demonstrate the flexibility of these four core models by 
extending them to include random slopes, latent (single-level or cross-level) interactions, and latent 
quadratic effects.  
 
Substantively we use these models to test the big-fish-little-pond effect (BFLPE), showing that individual 
student levels of academic self-concept (L1-ASC) is positively associated with individual level 
achievement (L1-ACH) and negatively associated with school-average achievement (L2-ACH) – a finding 
with important policy implications for the way schools are structured. Extending tests of the BFLPE in new 
directions, we show that the nonlinear effects of the L1-ACH (a latent quadratic effect) and the interaction 
between gender and L1-ACH (an L1 x L1 latent interaction) are not significant. Whilst random-slope 
models show there is no significant school-to-school variation in relations between L1-ACH and L1-ASC, 
the negative effects of L2-ACH (the BFLPE) do vary somewhat with individual L1-ACH.  
 
We conclude with implications for diverse applications of the taxonomy of latent contextual models, 
including recommendations about their implementation, effect size estimates (and confidence intervals) 
appropriate to multilevel models, and directions for further research in contextual effect analysis. 
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Complex substantive issues require sophisticated methodologies—this is the essence of substantive-
methodological synergies. Here we explore applications of the integration of structural equation modelling 
(SEM) and multilevel modelling (MLM) to the issue of contextual analysis; seeking to control 
simultaneously measurement error due to sampling of items and sampling error due the sampling of 
persons. We apply these latent contextual models to extend test of effects of attending academically 
selective schools on academic self-concept. This research is substantively important in relation to theory 
(self-concept formation and frame of reference effects) and has important policy implications about 
tracking, ability grouping, and the organisation of school systems.  

Overview of Methodological and Substantive Issues: A substantive-methodological synergy 
Methodological Focus: Contextual Effects. 

Broadly, contextual studies evaluate whether group-level (L2) characteristics (e.g. family, peer 
group, classroom, school, workplace, country) contribute to outcomes beyond what can be explained by 
individual-level (L1) characteristics. In many diverse disciplines, L2-constructs are based on the 
aggregation of variables from L1. This general strategy and related value-added models are at the heart of 
research in education (school effectiveness studies and associated league tables, value-added models; 
classroom/school climate studies), organisational psychology studies, family research, sociology and 
increasingly in medical research in which related value added-models are being used to evaluate health 
setting effectiveness (Croon & van Veldhoven, 2007; Iverson, 1991). Contextual models are applied 
particularly widely in industrial, organizational and educational psychology where researchers seek to 
unconfound the effects of individuals (e.g., workers, students) from those of the organizations or schools to 
which the individuals belong (e.g., Bliese, 2000; Bliese, Chan, & Polyhart, 2007; also see Kozlowski & 
Klein, 2000). In fact, the issues are central to any area of research in which individuals interact with other 
individuals in a group setting, leading Iverson (1991) to conclude: “This range of areas illustrates how 
broadly contextual analysis has been used in the study of human behavior” (p. 11). In each case, L1-
attributes of persons (e.g., achievement or climate ratings in schools, employee satisfaction or productivity 
in business settings, family functioning, and health in hospital settings) are aggregated to form L2-
constructs. A contextual effect is said to occur when aggregated group-level constructs are related to 
subsequent outcomes beyond what can be explained in terms of the individual characteristics. Whilst 
contextual studies have a long history across many social science disciplines, recent methodological 
advances offer opportunities to better understand juxtapositions between individual and group effects.  
Multilevel Latent Model of Contextual Effects. 

There is wide-spread application of (single level) SEMs with multiple indicators of individual level 
constructs and of MLM studies in which constructs at each level are based on (single) manifest indicators 
of each construct. Nevertheless, progress has been slow in integrating these two dominant analytical 
approaches into a single framework in a way that they can be easily implemented in applied research – the 
focus of the present investigation. Early developments (e.g., Goldstein & McDonald, 1988; McDonald, 
1993, 1994; also see Goldstein, 2003) laid the foundation for important advances but they were not easily 
implemented with existing software (e.g., McDonald, 1994). Muthén (1989, 1994) demonstrated multilevel 
SEM applications using his partial maximum likelihood estimator and subsequently implemented a full 
information likelihood estimation procedure. Bovaird (2007) provides an overview of developments and 
statistical packages in this area, but recommends Mplus as being particularly versatile for all forms of 
latent-variable modeling, including the integration of SEM and MLM as illustrated here (see also Skrondal 
& Rabe-Hesketh, 2004). Skrondal, Rabe-Hesketh and Pickles (2004) make a similar point, arguing that: “A 
synthesis of both methods, namely multilevel structural equation models, is required when the units of 
observation form a hierarchy of nested clusters and some variables of interest cannot be measured directly 
but are measured by a set of items or fallible instruments” (p. 168), demonstrating how this can be 
incorporated into their generalised linear latent and mixed models (GLLAMM) framework.  

Lüdtke et al. (2008) described a multilevel latent variable model that corrected the bias in parameter 
estimates of contextual analysis due to the sampling error associated with aggregating L1-constructs to 
form L2-constructs. We refer to the Lüdtke et al. (2008) model as a partial correction model in that it 
corrects for sampling error in the aggregation of L1 constructs to form L2 constructs, but not measurement 
error due to the sampling of items (manifest-variable, latent-aggregation Model 2 in Figure 1). Here, we 
extend their work by applying a doubly latent approach that additionally controls for measurement error at 
L1 and L2 through the use SEMs based on multiple indicators of each (latent) factor. Based on these 
different approaches to correction for sampling and measurement error, we consider a 2x2 typology of 
contextual models (see Figure 1; also see Lüdtke et al., 2009) that are: (a) manifest or latent variable in 
relation to sampling items (i.e., use multiple indicators to control for measurement error, a traditional focus 
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of CFA/SEM studies) and (b) manifest or latent aggregation in terms of sampling of persons (i.e., use 
latent aggregation to correct for sampling error in the aggregation of L1 constructs to form L2 constructs, a 
traditional focus of MLM studies). Traditional contextual models are often doubly manifest (manifest 
variable, manifest aggregation; see doubly manifest Model 1 in Figure 1), not controlling either 
measurement error or sampling error. Whilst unreliability has many potential components of error (as 
emphasized, for example, in generalizability theory; see Kane, Gillmore, & Crooks, 1976), here we 
emphasize measurement error (associated with sampling items, a traditional focus of CFA/SEM studies) 
and sampling error (associated with sampling of persons with L2 groups).  

Importantly the four central models of this 2x2 taxonomy (Figure 1; also see the description of 
models in the Methods section) can easily be implemented with existing software (see Appendix). Here our 
focus is on the doubly latent contextual model (latent variable, latent aggregation M4 in Figure 1 and 
Appendix) with multiple indicators at L1 and L2 (controlling for unreliability due to measurement error at 
both levels) and a correction for sampling error in the aggregation from L1 to L2. However, it is also 
possible to test a latent-manifest (i.e., latent variable with manifest aggregation) approach in which 
multiple indicators are used to infer L1 and L2 constructs but without a control for sampling error which 
might be appropriate when sampling error is zero (i.e., L2 constructs are based on all possible L1 units in 
each group). Partial correction models (M2 and M3 in Figure 1) are also useful in applied studies based on 
small Ns where the full correction (doubly latent) model might have convergence problems or be unstable. 
Simulation research (Lüdtke, et al., 2008, 2009) shows that under conditions of small N at L1 and L2, more 
complex models are prone to non-convergence and can result in highly unstable estimates even when 
solutions converge to fully proper solutions. In this regard, one of the partial correction models (M2 or M3) 
might be more accurate – despite the bias – than an unbiased but unstable estimate based on M4. For this 
reason, it is also useful to compare the results from all four models. 

Whilst the basic four contextual models (Figure 1) are random intercept models with fixed slopes, 
we extend these models to estimate random slopes (i.e., allow the slopes between L1 constructs to differ in 
each L2 unit) and potential predictors of the variation in random slopes. Further demonstrating the 
flexibility of these models, we also extend these contextual models to include latent interactions (between 
latent L1 constructs or cross-level interactions between latent L1 and L2 constructs) or latent quadratic 
effects. We compare the results of the doubly-latent contextual model (M4 in Figure 1) with other models 
in the taxonomy, and demonstrate how all models can be implemented with commercially available 
software (see Appendix).  
Substantive Focus: Big-Fish-Little-Pond Effect (BFLPE) of Selective School on Self-concept 

There is a revolution sweeping psychology (e.g., Seligman & Csikszentmihalyi, 2000) that emphasizes 
a positive psychology focusing on how healthy, normal, and exceptional individuals can get the most from 
life. Positive self-beliefs are at the heart of this revolution (Bruner, 1996; Hunter & Csikszentmihalyi, 
2003; Marsh & Craven, 2006). The importance of self-concept and related constructs is highlighted by the 
frequency with which self-concept enhancement is identified as a major focus in diverse settings, including 
education, child development, mental and physical health, social services, industry, and sport/exercise. Not 
only do self-concepts reflect previous life experience, but they also facilitate future life successes. Persons 
with a positive self-concept in a particular area are likely to make critical decisions, engage in appropriate 
behavior, and pursue positive and challenging life experiences. These critical life decisions and behaviors 
are likely to reinforce those positive self-concepts and lead to further accomplishments. If significant 
others or organizations inadvertently undermine self-concepts in an attempt to improve desired outcomes, 
they are likely to undermine the very outcomes they seek to maximize. Empirical support for these claims 
are particularly strong in educational settings where there is there is good evidence for the reciprocal 
effects of academic self-concept and achievement (Marsh, 2007).  

Our substantive focus is the widely supported big-fish-little-pond effect (BFLPE), a classic 
contextual effect in which the effect of individual student achievement (L1-ACH) on their academic self-
concept (L1-ASC) is positive, but the corresponding effect of group (school or classroom) average 
achievement (L2-ACH) is negative (see Marsh, 2007; Marsh & Craven, 2002; Marsh & Hau, 2003; Marsh, 
Seaton, et al., 2008). Although applied primarily to educational research, the historical and theoretical 
underpinnings of the BFLPE theoretical model come from a variety of disciplines, including 
psychophysics, social psychology, organisational psychology, and sociology (see Marsh, 2007; Marsh, 
Seaton, et al., 2008). The BFPLE is domain specific, in that it has been largely supported in relation to 
academic self-concept in academic settings, but not for global self-esteem or other non-academic 
components of self-concept (Marsh, 1987; 2007; Marsh, Chessor, Craven, & Roche, 1995; Marsh & 
Craven, 2006; Marsh, Seaton et al., 2008). The BFLPE is a robust, long-lasting contextual effect that 
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generalises across diverse research settings, levels of education, and cultures from all over the world (Marsh, 
Seaton et al., 2008). From a policy perspective, the BFLPE provides an alternative, contradictory perspective 
to educational policy on the placement of students in special education settings, one that is being enacted in 
many countries throughout the world.  

Historically (e.g., Marsh, 1984; 1987; 1991; Marsh & Parker, 1984), BFLPE research was based 
on single level models that are clearly unacceptable by current standards. Marsh (1984) used a single-level 
multiple regression based on manifest scores, using a small number of schools. Subsequent applications 
(Marsh, 1987, 1991) again used single-level multiple regression with manifest variables, but included more 
schools and a crude design effect was used to compensate for the clustered sampling. Marsh (1994) then 
applied a single-level SEM in which key constructs were measured with multiple indicators. Although 
there was only one indicator of L1-ACH available, each school was divided into random thirds. School-
averages based on the random thirds were used as separate indicators of L2-ACH, providing a crude 
control for sampling error in the L2-ACH that foreshadowed latent contextual models considered here.  

The first BFLPE study to use a true MLM (Marsh & Rowe, 1996) was a two-level MLM based on 
manifest indicators and manifest aggregation (e.g., doubly-manifest M1 in figure 1). Subsequent BFLPE 
studies (e.g., Lüdtke, Köller, Marsh, & Trautwein, 2005; Marsh, Kong & Hau, 2000; Marsh, Trautwein, 
Lüdtke, Baumert & Köller, 2008; Marsh, Trautwein, Lüdtke & Köller, 2008) have typically been based on 
this manifest-manifest contextual model in which L2 was either school or class, depending on the design of 
the study. Marsh and Hau (2003) subsequently applied a three level model (level 1 = students, level 2 = 
schools, level 3 = countries) with the OECD/PISA study, demonstrating the cross-national generalizability 
of the BFLPE. In a recent BFLPE study with a particularly complex factor structure (19 constructs inferred 
from multiple indicators measured over an 8 year period), Marsh and O’Mara (2008) implemented the 
“complex design” option in Mplus, which only corrects standard errors for the dependencies arising from 
the nesting of students within classrooms, instead of a MLM. Apparently, there have been no BFLPE 
studies implementing either partial correction models (M2 and M3 in Figure 1) or the doubly-latent (M4 in 
Figure 1) that more clearly separates measurement error (sampling of items) and sampling error (sampling 
of persons). However, the doubly-latent M4 that integrates the SEM and MLM approaches that have been 
used in previous BFLPE studies.  
 Within the BFLPE literature (Marsh & Hau, 2003; Marsh et al., 2008) there is concern as to whether 
the BFLPE (the negative effect of L2-ACH) interacts with individual student characteristics – particularly 
student ability. Theoretically there is controversy with some suggesting that the BFLPE should be largest 
for the lowest achieving students and smallest (or even reversed) for the highest achieving students, 
whereas the theoretical perspective proposed by Marsh and colleagues suggests that the size of the BFLPE 
should be similar for all students (although tests of this might be complicated by scaling issues, including 
floor and ceiling effects). Substantively, this is a critical issue in that it fundamentally influences the way 
in which school systems should be designed. Empirical research has been largely consistent with Marsh’s 
theoretical prediction that the BFLPE generalises over individual student levels (e.g., Marsh, Seaton, et al., 
2008). Observed interactions tend to be small and not even consistent in their direction. However, whilst 
interaction effects are widely posited in theoretical and applied research, they are typically weak and not 
replicable, due, at least in part, to inherent problems of unreliability of interactions and manifest variables 
upon which they are based. For single-level analyses, recent developments in latent interactions (Marsh, 
Wen, Hau, 2004; 2006; Marsh, Wen, Hau, Little, Bovaird & Widaman, 2007) now allow researchers to 
control L1 measurement error that has been such a serious problem in interaction effects based on manifest 
variables. However, in BFLPE research these developments have not yet been extended to multilevel 
cross-level interactions between individual (L1) and group (L2) characteristics that are critical in 
contextual studies (e.g., Marsh, 1980; 1991; Marsh, Martin & Cheng, 2008; Seaton et al., 2008). More 
generally, in the present investigation we demonstrate how these in self-concept research can be addressed 
by applied researchers using easily implemented extensions of the taxonomy of contextual models (Figure 
1) with readily available commercial software (Appendix). 

Methods 
Sample. 

Data considered here are part of the large, ongoing German study, Transformation of the Upper 
Secondary School System and Academic Careers (TOSCA), conducted by the Max Planck Institute for 
Human Development, Berlin, and the Institute for Psychology II at the University of Erlangen- Nuremberg. 
The students were from 149 randomly selected upper secondary schools in one German state and were 
representative of upper secondary schools in this state. In each school, up to 40 students were randomly 
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selected to participate in the study. Students in the present sample (N=4,475, 45% males) were in their 
final year of upper-secondary schools (typically aged 17–19). Two trained research assistants administered 
materials in each school in February to May 2002. The participation rate was more than 99% at the school 
level and 80.2% at the student level.  
Materials. 

Math self-concept was measured with the German adaptation (Marsh, Trautwein, Lüdtke, Köller & 
Baumert, 2006; Schwanzer, Trautwein, Lüdtke, & Sydow, 2005) of the Self-Description Questionnaire 
SDQ III (Marsh & O’Neill, 1984). Preliminary results based on the English-language version of the 
instrument, independent translations by four German researchers with English as a second language, 
assistance of a professional translator, and extensive pilot testing resulted in a short German instrument 
with four items per scale with a 4-point (disagree–agree) response format. The selected items met two 
conditions: (a) they focused on competency (e.g., ‘‘I’m good at mathematics’’) rather than on the affective 
relation to the specific domain (e.g., ‘‘I like mathematics’’) and (b) they had the highest factor loadings in 
pilot studies. In support of the construct validity of this measure of math self-concept, Marsh, Trautwein, 
Lüdtke, Köller and Baumert (2006) demonstrated that it was substantially correlated with math 
achievement test scores, math school based performance, and coursework selection in mathematics. The 
three indicators of mathematics achievement were based on the original items from the Third International 
Mathematics and Science Study (Baumert, Bos, & Lehmann, 2000).  
Statistical Models and Analyses 
In the following we describe the contextual analysis models as they are applied to the BFLPE (also see 
path diagrams in Figure 2). In the present study, we have a two-level structure with students nested within 
school and an individual-level variable X (e.g., achievement) predicting the dependent variable Y (e.g., 
self-concept). Both the independent and the dependent variable are measured by multiple indicators, k = 
1,...,K and l = 1,...,L. At the student level (Level 1) the covariate is calculated by 

∑
=

• =
K

k
kijij X

K
X

1

1 averaging across the K items for each student i in school j. Correspondingly, at the school 

level (Level 2) the covariate is calculated by summing across the K items and the nj persons in each group 

j:  ∑∑
= =

•• ⋅
=

jn

i

K

k
kij

j
j X

nK
X

1 1

1 . In a similar vein the dependent variable is calculated by ∑
=

• =
L

l
lijij Y

L
Y

1

1 . The 

structural equation (also see Model 1 in Figure 2) is specified as follows 
ijjjjijij XXXY ε+δ+β+−β+β= •••••• 0210 )(       (1) 

In this structural equation β0 is the grand-mean intercept, β1 is the within-group regression coefficient 
describing the relationship within schools and β2 is the between-group regression coefficient that indicates 
the relationship between the schools means (Cronbach, 1976), and εij and δ0j are normally distributed (with 
an expected value of zero) and uncorrelated residuals at L1 and L2 A contextual effect occurs if βb is 
significantly different from βw. Because model 1 is manifest in relation to combining items (i.e., ignores 
measurement error) and manifest in relation to aggregation from L1 to L2 (i.e., ignores sampling error) we 
label this as the doubly manifest approach to estimating group effects in MLM. As can be seen (Figure 2) 
the doubly manifest approach uses observed scores for achievement at the within and the between level 
(indicated by squares).   

One problematic aspect of the manifest contextual analysis model is that the observed school-
average jX •• might be a highly unreliable measure of the unobserved school average because only small 
numbers of L1 students are sampled from each L2 school (O’Brien, 1990). Lüdtke et al. (2008) introduced 
a multilevel latent covariate (see Model 2 in Figure 2) approach that takes into account sampling error 
when estimating group effects (see also Croon & van Veldhoven, 2007). In this approach the group effect 
is considered as an unobserved latent variable Uxj that has to be inferred from the observed data. More 
specifically, the unobserved group mean is regarded as a latent variable that is measured with a certain 
amount of precision by the group mean of the observed data (Asparouhov & Muthén, 2007). The precision 

is given by 
)/( 22

2

jxx

x

nσ+τ
τ

where 2
xτ is the variance between groups and 2

xσ is the variance within groups. 

In the literature on reliability of multilevel data (Bliese, 2000; LeBreton & Senter, 2008) this measure is 
also sometimes called the ICC(2) and is used to determine the reliability of aggregated individual level 
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data (e.g., the observed school average jX •• ) in terms of sampling only a finite number of L1 units from 
each L2 unit. Thus, it can be interpreted as the reliability of the group mean in relation to sampling error. In 
most cases, the mean group size can be entered for nj if not all groups are of the same size (see Searle, 
Casella, & McCulloch, 1992, on how to deal with pronounced differences in group size). 

As is typical within structural equation modeling (SEM), the estimate of the group-level coefficient 
is then corrected for the unreliable assessment of the latent group mean by the observed group mean. The 
structural equation for the Model 2 (also see Model 2 in Figure 2) is given as follows: 

 ijjxjjijij UXXY εδβββ +++−+= •••• 0210 )(          (2) 

where Uxj is a latent variable that is corrected for unreliability due to sampling error. However in 
the Model 2 measurement error at L1 and L2 distorts the estimation of the corresponding regression 
coefficients at β1 and β2. This becomes also apparent in the path diagram in Figure 2 in which student 
achievement is a latent variable at L2 but a manifest at L1. Because the Model 2 does not take into account 
measurement error we will refer to it as the manifest latent approach. Manifest alludes to the fact that this 
approach starts with scale scores or single indicators. On the other hand the term latent indicates that it 
controls for the unreliability that is due to sampling error.  

In Model 3 it is assumed that both the independent and the dependent variable are measured by 
multiple indicators. By extending the classical confirmatory factor analysis (CFA) model, a multilevel 
CFA with a within-group and between-group measurement model can be defined (see Muthén, 1991; 
McDonald, xx). Using this approach, single indicators of the dependent variable Y can be decomposed as 
follows (also see Model 3 in Figure 2): 

Ylij = μly + λly,W Uyij + Rlyij + λly,B Uyj + Rlyj ; l = 1,..., L     (3) 

Where λly,W are the within factor loadings, λly,B are the between factor loadings, Rlyij are the residuals at 
Level 1, and Rlyj are the residuals at Level 2. Uyij and Uyj are the unobserved true scores at L1 and L2. In 
classical test theory Equation x represents a congeneric measurement model, because the factor loadings 
are allowed to vary across indicators. Although the independent variable is also measured by multiple 
indicators (k = 1,…, K), in the latent-manifest covariate approach the latent factor at L2 is based on 
manifest indicators that are the result of manifest aggregations of the observed indicators to the group 

level: ∑
=

• =
jn

i
kij

j
jk X

n
X

1

1 . Thus, the measurement model at level 1 is:  

xkijxijWkkxjkkij RUXX +λ+μ=− • , ; k = 1,..., K  
The measurement at Level 2 is: 

xkjxjBkkxjk RUX +λ+μ=• , ; k = 1,..., K 
The resulting structural model is  

ijjjxijxyij UUU ε+δ+β+β+β= 0210  
For example, using this approach the L1 achievement factor would be based on responses to the 

three L1 achievement indicators and the L2 (school-average) achievement factor is based on the responses 
to simple (manifest) school-average values of the corresponding L1 indicators (see path diagram in Figure 
2 where L2 indicators of achievement are represented as squares, representing manifest-aggregate 
variables, rather than circles, representing latent-aggregate variables). Hence, L2 achievement is latent in 
the sense that it is based on multiple indicators. However, it is manifest in relation to aggregation from L1 
to L2 in the sense that it does not correct for sampling error associated due to sampling of items (i.e., with 
within-class variation in L1 achievement scores as does Model 2). Hence, we refer to Model 3 as the latent 
manifest approach. This reflects the fact that it is latent in terms of the measurement model at both levels 
but that it is manifest in terms of not taking into account the sampling error.  

Model 4 (also see Model 4 in Figure 2)is doubly latent in that it takes into account measurement 
error at L1 and L2 (based on multiple L1 indicators) and L2 sampling error due to the aggregation from L1 
to L2. In this sense it builds on the latent manifest (Model 3) approach (that has latent L1 and L2 factors in 
which measurement was controlled based on internal consistency among multiple indicators but did not 
incorporate corrections of L2 sampling error based on internal consistency among students within each 
class) and the manifest latent (Model 2) approach (that was did not control for sampling error in the 
aggregation from L1 to L2).  

Xkij = Uxij + Rxkij + Uxj + Rxkj ; k = 1,…, K      (4) 
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As can be seen in Figure 2, in the doubly latent approach the indicators of achievement at L2 as 
well as the factor at L1 are considered as latent variables (i.e., are circles rather than squares). This type of 
model was also previously described by Rabe-Hesketh, Skrondal and Pickles (2004) as a special case of 
their GLAMM framework (see equation 19, p. 181; see also McDonald, xx).  
Model 4 models can now be extended to a model that allows the within-group regression coefficients β1 to 
vary across the schools (also see Model 5A in Figure 2):  

ijjjjxijxyij UUU ε+δ+δ+β+β+β= 10210      (5A) 
where δ1j are the normally distributed (with an expected value of zero) deviation from the average slope β1. 
Note that δ0j and δ1j are allowed to covary among schools. In the next step, the interaction Uxij·Uxj between 
individual achievement and school-average achievement is added to explain variation in slopes across 
schools (also see Model 5B in Figure 2): 

ijjjjxijxjxijxyij UUUUU ε+δ+δ+⋅β+β+β+β= 103210      (5B) 
In Model 6 we added to Model 4 the sex of the student and the interaction between individual achievement 
and Sex (also see Model 6 in Figure 2):  

ijjijijxijjxijxyij SEXUSEXUUU ε+δ+⋅β+β+β+β+β= 043210     (6) 
Finally, in Model 7 (also see Model 7 in Figure 2) quadratic individual achievement is added to Model 4 to 
evaluated possible nonlinear relations between self-concept and achievement: 

ijjxijjxijxyij UUUU ε+δ+β+β+β+β= 0
2

3210       (7) 
All statistical analyses were conducted with Mplus (version 5). For estimating parameters in 

MLMs, Mplus (5.2) uses a general approach that is based on an accelerated EM algorithm that provides 
maximum likelihood estimates for two-level structural equation models with missing data (Asparouhov & 
Muthén, 2003; also see Lüdtke, et al., 2008). This general model incorporates random coefficients and 
integrates the modeling frameworks of MLMs and SEMs. It also provides robust estimates of the 
asymptotic covariance of the maximum likelihood estimates and the chi-square test. These models can be 
fitted with the approach described by Lee and Poon (1998) that handles only random intercept models, but 
Mplus takes a more general approach with random slopes. This Mplus-based approach does not require an 
assumption of normality with the MLR estimator because it implements nonnormality robust SE 
calculations. More importantly, it is now relatively easy to estimate random slopes models in an SEM 
framework (see equations 5A and 5B), a problem that has plagued SEM researchers. Thus, for example, in 
his SEM textbook Kaplan (2000, p. 148) wrote:   “Thus, unlike standard multilevel regression analysis, 
multilevel structural equation modeling is an intercept-as-outcomes model only. Although a considerable 
amount can be learned from such an analysis, the inability to study slope variability limits the kinds of 
substantive questions that can be considered.”  

Here we focused on group mean centering, where the mean of school j is subtracted from the score 
of student i in school j; )( jij XX ••• − . A contextual effect in the group mean centering model is present if 

the L2 between-school regression coefficient is significantly different from the L1 within-school regression 
coefficient. This was accomplished by calculating an additional parameter – the difference between the 
weights assigned to individual and L2-ACH — that is a direct estimate of the BFLPE (see Appendix). 
Although this could easily be done by hand, the important advantage of the approach used here is that it 
also provides a standard error of the estimate.  

Within Mplus, it is relatively easy to incorporate interaction terms (see equations 6 and 7) based on 
the latent moderated structural equation algorithm proposed by Klein and Moosbrugger (2000; also see 
Marsh et al., 2004). This procedure is based on the analysis of the multivariate distribution of the joint 
indicator vector and explicitly takes the specific type of nonnormality implied by latent interactions into 
account. The joint distribution of indicator variables is represented as a finite mixture of normal 
distributions. In MLMs it is typical to distinguish between group-mean centering and grand mean centering 
(Enders & Tofighi, 2007; Kreft, de Leeuw & Aiken, 1995).  

Results 
We begin with a single level model with manifest variables and manifest aggregation. We label 

this as model 0 (M0 in Figure 2) to emphasize that it is not a MLM and not part of our taxonomy. 
However, it that was an important historical basis of BFLPE studies (e.g., Marsh, 1984; 1987) and 
contextual studies more generally. Nevertheless, such single-level doubly manifest models are clearly 
inappropriate in that at least the standard errors are likely to be substantially biased and that it precludes 
many interesting MLM questions. In predicting L1-ASC in M0 (see Table 1), the effect of L1-ACH (.605) 
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is substantial. However, because of the within-group centering, the estimated effect of L2-ACH (.292) is 
not a direct estimate of the BFLPE of L2-ACH. Hence, we calculated an additional parameter – the 
difference between weights for individual and L2-ACH — that is a direct estimate of the BFLPE and a 
standard error to test for its statistical significance (see syntax in Appendix). In M0, the BFLPE is -.313 
and highly significant. An increase of 1 SD in L2-ACH (in the metric of L1-ACH) results in a decline in 
L1-ASC of almost one third of a SD. 
MLM Contextual Models (Figures 1 & 2)  

Doubly Manifest Model (M1): Single indicators and manifest aggregation. M1 (see Figures 1 & 
2) is a MLM contextual model based on manifest (single-indicator) measures of L1-ACH and L2-ACH. 
Aggregation is manifest in that the L2 measure of L2-ACH is a simple (manifest) average of the L1-ACHs 
in each school. Although this doubly-manifest model is clearly more appropriate than M0, it implicitly 
assumes that there is no measurement error for any of the L1 or L2 constructs, and no sampling error in 
aggregating L1-ACH to form L2-ACH. The BFLPE (-.304) is similar in size to estimates from the single-
level M0, but the standard errors – particularly for L2 constructs – are substantially larger (reflecting the 
multilevel structure of the data ignored in M0). 

Manifest-latent contextual model (M2): Control For Sampling Error.  M2 (see Figures 1 & 2) is 
the latent-manifest MLM described by Lüdtke et al. (2008). It controls for sampling error in the 
aggregation of L1 constructs to form L2 constructs. However, because L1 and L2 constructs are manifest 
(based on single indicators), it does not control for L1 measurement error. In M2, the effect of L1-ACH on 
L1-ASC is .605 (and residual variance in L1-ASC at the individual level is .685). However, the important 
feature of M2 is that the L2-ACH is latent score in the sense that it corrects sampling error based the latent 
aggregation of L1-ACH to form L2-ACH. Hence, the BFLPE estimate for M2 (-.343) is larger than for M1 
(-.304).  
 Latent-Manifest Model (M3): Control measurement error. M3 is a latent-manifest MLM (see 
Figures 1 & 2) in which both L1 and L2 constructs are based on multiple indicators to control for 
measurement error. However, M3 still assumes no sampling error in the aggregation of L1-ACH to form 
L2-ACH. For purposes of this analysis, we specified that L1 factor loadings were the same as L2 factor 
loadings (see Appendix). Although not necessary, this cross-level invariance facilitates interpretations of 
the results (see subsequent discussion of this issue). The BFLPE for M3 (-.317) is substantial and 
somewhat more negative than estimates based M0 and M1 (Table 1).  

Doubly-manifest contextual Models (M4): Control for Sampling and Measurement error. M4 is 
a doubly latent MLM (see Figure 1) that incorporates both multiple indicators of L1 constructs to control 
for measurement error at L1 and L2, and a latent aggregation that controls for sampling error in the 
aggregation process in going from L1 to L2. In this sense, Model 4 is fully latent and builds on partial 
correction models that only correct for either sampling error (M2) or measurement error (M3). As M4 is 
doubly latent, the BFLPE estimate (-.367) is more negative than M1 (-.304), M2 (-.317) or M3 (-.343).  
Extensions of the Doubly Latent Contextual Model: Latent Interactions and Non-linear Terms 
 The four MLM contextual models (Figures 1 & 2) are very flexible, and can easily be extended to 
include additional effects. Whilst the extensions described here could be applied to any of the four core 
contextual models, we focus on their application in relation to M4 (see subsequent discussion about when 
other models might be used instead). In the extensions to M4 considered here, we evaluate: 
• a random effects model (the extent to which the relation between L1-ACH and L1-ASC varies from 

school to school),  
• a latent cross-level interaction (between L1-ACH and L2-ACH),  
• a latent interaction between to L1 constructs (sex and L1-ACH), and  
• a latent quadratic model (quadratic component of L1-ACH).  

Each of these extensions demonstrates the flexibility of the statistical models considered here and tests 
substantively important questions in self-concept research.  

Random Slopes and Latent cross-level interaction between L1-ACH and L2-ACH (M5A & 5B, 
Table 3). As noted earlier, a numerous of studies have evaluated whether the BFLPE varies with L1-ACH 
and found weak, inconsistent or non-significant effects consistent with theoretical predictions. However, 
previous BFLPE research did not test this interaction with latent contextual models like those considered 
here.  

We begin by extending M4 to include random slopes -- whether the effect of L1-ACH on L1-ASC 
varies from school-to-school (labelled “slope variance” in M5A and M5B). In model 5A, the variance 
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component for this slope parameter (.001, SE=.001) is very small, indicating that there is no significant 
school-to-school variation in the size of the slope. Although not reported, the random slope parameter was 
non-significant for each of the four models in our 2x2 taxonomy of contextual models (Figure 1). In M5A, 
the relation between the slope and intercept is also very small (-.008, SE = .003). 

Even though the variance component for the random slope parameter is not statistically significant, 
we tested the extent to which this variation is predicted by L2-ACH (ACH-b in Table 5). This effect is the 
cross-level interaction – how the effect the effect of L2-ACH on L1-ASC varies with L1-ACH. This effect 
is small, but positive and statistically significant (.118, SE=.037). These results indicate the effect of L1-
ACH on L1-ASC is substantial and nearly the same across schools. Nevertheless, a significant portion of 
this small variance can be explained by L2-ACH. Whereas the BFLPE is substantial and negative (-.387), 
this negative effect is offset to some extent for the very brightest students.  However, even for high 
achieving students, there is a substantial negative effect of L2-ACH. Consistent with theory and previous 
research, the size of the BFLPE does not vary much with the ability levels of individual students. 

Model 6: Latent interaction between sex and L1-ACH (Table 4). There are well-established, 
gender stereotypic differences in L1-ASC factors that tend to be even stronger than those observed in 
corresponding ACH factors. Nevertheless, previous research (Marsh & Yeung, 1998) suggests that the 
effect of L1-ACH on L1-ASC is similar for boys and girls (i.e., does not interact with gender). In Model 6 
(Figure 1) we add L1 terms representing the main effect of gender and its interaction with L1-ACH to 
Model 4 (see Appendix). However, neither of these added effects were statistically significant. 

Model 7: Latent quadratic effect of L1-ACH (Table 4). A number of BFLPE studies (e.g., Marsh 
& Rowe, 1996; Marsh & Hau, 2004) reported a non-linear, quadratic component in the relation between L1 
ACH and L1-ASC. In Model 8 (Figure 1), we added a latent quadratic term to model 4 (see Appendix). 
However, unlike most previous research this was a truly latent quadratic term based latent L1-ACH. 
However, the quadratic effect of L1-ACH on L1-ACH is not statistically significant. 

 
Discussion 

Substantive-methodological Synergy 
Substantively, we provided a range of different approaches to evaluate the size of the BFLPE, an 

important theoretical issue in self-concept research with significant policy implications. Methodologically, 
we describe applications of a taxonomy of latent contextual models – and their extension—that has broad 
applicability. Taken together, these illustrate the strength of substantive-methodological synergies and the 
flexibility of the statistical models demonstrated here. The taxonomy of four core contextual models 
(figure 1) have trade-offs in relation to bias and robustness. In particular, under many circumstances in 
applied research, the full-correction M4 is likely to be unbiased but least stable whilst the partial correction 
models (M2 and M3, or even M1) are likely be biased but more stable. For this reason, we recommend that 
applied researchers evaluate the entire set of models. When there is a clear pattern in results based on the 
four models, the applied researcher can have more confidence in the interpretation of the results than when 
any one of the models is applied. In the present investigation, for example, the size of the BFLPE were 
reasonably similar across the four models, but was somewhat larger for the full-correction M4 than for the 
partial-correction M3 and M2, and smallest for M1 that corrected for neither measurement error not 
sampling error.  
Limitations and Directions for Further Research 

Applicability and Robustness of Estimation Procedures. The present investigation is based on a 
robust maximum likelihood estimator (Muthén & Muthén, 2006-2008). However, for complex models like 
those considered here the optimisation algorithms may not converge to a fully proper truly optimal solution 
unless L1 and L2 sample sizes are large, especially for the doubly-latent model (M4) and extensions built 
upon it (M5-M7). Whilst this was apparently not a problem in the present investigation with 149 schools 
and 4,475 students, the doubly latent model in particular may not work so effectively when sample sizes 
are more modest – as is common in many applied contextual studies. However, increasingly sophisticated 
statistical packages such as Mplus have good diagnostics that warn applied researchers when convergence 
to a proper solution is problematic and a number of options to address this problem – increasing the 
number of iterations, increasing the number of random start values, and using better start values. By 
substantially increasing the number of random start values, the applied researcher can evaluate how 
frequently the robust ML estimation procedure results in the same log-likelihoods.  

Robustness of solutions—based on the sampling variability in parameter estimates—is likely to be 
a problem for latent contextual models. In extensive simulation studies based on the manifest-latent (M3) 
MLM, Lüdtke et al. (2008) showed that under some conditions (small L1 and L2 sample sizes and small 
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ICCs) the variability contextual effects was large and that a large number of clusters was necessary for the 
asymptotic properties to hold in finite samples. The sample size demands for the doubly-latent contextual 
model are even greater, based on further simulation studies that investigate the finite sample performance 
and sample size requirements both at L1 and L2 for these models (see Lüdtke, et al., 2009).  

A viable option to the problem of unstable parameter estimates based on the doubly latent MLM 
(M4) is to consider estimations based on partial correction models (e.g., Models 2 and 3) or even the 
doubly manifest model (Model 1) that are substantially less complex. Particularly when sample sizes are 
small, the apparently small amounts of bias introduced by these partial correction models might be less 
worrisome than the potentially unstable estimates (and wide confidence intervals) resulting from the more 
complex doubly latent model (see Lüdtke, et al., 2009). Even with the present investigation where the 
sample sizes are substantial, the standard error for the BFLPE associated with the doubly latent model 
(0.040 is larger than those associated with other less complex models (0.028 to 0.038). We expect that this 
difference could be larger, depending upon the complexity of the model and sample sizes (also see Lüdtke 
et al., 2009). Comparative simulations could also shed further light on the relative merits of the different 
MLM contextual models and address the question of which estimate comes closest to the ‘true’ value of 
population generating model and the extent to which potential biases of the partial correction models (M3 
and M2, or even M1) are offset by their higher efficiency in small samples (Lüdtke, et al., 2008; 2009). 
Because of this trade-off between bias and robustness, we recommend that the entire set of four contextual 
models (Figure 1) all should be evaluated (see earlier discussion).  

The “complex design” option offers an entirely different alternative to the problem of unstable 
solutions. Two different traditions exist for handling issues associated with clustered samples and multi-
stage sampling designs. The MLM approach is to make the multiple levels of the data explicit, whereas the 
complex design approach is to appropriately weight the parameter estimates so that the standard errors 
used to test the effects are appropriate. The position here is not that one approach is inherently superior to 
the other and indeed there are circumstances in which the results based on the two approaches should 
converge (Muthén & Satorra, 1995). Furthermore, both approaches have been used in BFLPE studies (e.g., 
Marsh & O’Mara, 2009). The appropriateness of the complex design option is also relevant to the issue of 
cross-level invariance when there are multiple indicators of the latent L1 and L2 constructs. In particular, if 
the cross-level invariance is met at each level, then assumptions of the complex design option are 
appropriate. However, if this invariance does not exist, then the factor model does not necessarily hold true 
in the aggregate (for further discussion, see Muthén & Satorra, 1995, pp. 290-291, discussion of 
“aggregatabilility” and related discussion about latent variable modelling in heterogeneous populations by 
Muthén, 1989; also see Asparouhov & Muthén, 2006). Whilst many of the advantages of MLMs are not 
available when the complex design option is used, the complex design option might be particularly 
attractive when the numbers at L1 and L2 are modest or the model is complex. In this respect, the complex 
design option applied to single-level models (e.g., M0 in Table 1) provide a completely different strategy 
when L1 and L2 sample sizes might not be sufficient to justify the use of MLMs in contextual studies. This 
is an area that warrants further attention. 

Finally, although beyond the scope of the present investigation, Bayesian procedures with 
programs such as WinBUGS offer a natural framework for multilevel models, particularly attractive 
alternative when sample sizes are not substantial or the model to be estimated is very complicated (Draper, 
2007; Gelman & Hill, 2007). (Lee, 2007; Ntzoufras, 2009; Swaminathan & Rogers, 2008). Bayesian 
procedures are naturally suited to multilevel models with modest Ns in that the sampling based Bayesian 
procedures depend much less on the asymptotic theory than likelihood estimation procedures (Lee, 2007). 
A Bayesian framework using the WinBUGS software which is based on Markov Chain Monte Carlo 
methods, can be used to integrate multilevel modeling and structural equation modeling in a very flexible 
way (Lee, 2007; Segawa, Emery, & Curyy, 2008). 

In summary, particularly the doubly-latent model demonstrated here may not be sufficiently robust 
for many applied studies based on small Ns. Whilst beyond the scope of the present study, there is clear 
need for simulation studies to evaluate the robustness of procedures presented here under a variety of 
conditions and to explore alternative options or estimation procedures for conditions under which solutions 
are not stable.  

Nature of the variables involved: Formative vs. reflective L2 aggregation processes.  Lüdtke et 
al. (2008; also see Skrondal & Laake, 2001) distinguished between what they referred to as formative and 
reflective aggregations of L1 constructs. Although their distinction is based on a factor analytic rationale, a 
related distinction is made in the organisational psychology (e.g., Bliese, 2000; Bliese, Chan, & Polyhart, 
2007; also see Kozlowski & Klein, 2000) between compilation (or configural) models and composition 
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models. The main distinction between the two is that the group is the referent in the reflective aggregation 
process (i.e., each member of the group directly rates the L2 construct) whereas the individual is typically 
the referent in the formative aggregation process (i.e., the L2 aggregation is based on a group-average of 
individual characteristics). For example, if all members of each group rated the competitive climate of the 
group, the aggregate would be a reflective measure; whereas if each member rated their own individual 
competitive orientation the resulting aggregate would be a formative measure. In this sense, school-average 
ability might more reasonably be considered to be a formative aggregation and the reflective aggregation. 

The theoretical rationale for reflective aggregations of L1 constructs is based on classical 
measurement theory and the domain sampling model. Group characteristics are latent, unobserved 
constructs which can be inferred on the basis of multiple indicators. A critical assumption is that scores for 
each individual within the same group reflect the same L2 construct. In this respect the group members are 
interchangeable (in relation to scores reflecting the L2 reflective construct) and there is a degree of 
isomorphism between the L1 and L2 measures. The doubly-latent (M4) and manifest-latent (M3) models 
assume a reflective aggregation process to the construction of L2 aggregate constructs. 

Formative (compilation or configural) aggregations of L1 constructs are more problematic from 
the perspective of L2 sampling error. The L1 measures used to construct formative aggregations are not 
interchangeable in the sense that individuals within the same group have different L1 true scores so that 
within-group heterogeneity cannot be assumed to reflect only sampling error. Lüdtke et al. give the 
example in which the gender of all students in each of a large number of different classes is known and 
each class is characterized by the percentage of females. Clearly individual students are not 
interchangeable in relation to gender, it is reasonable to assume that there is little or no measurement error 
in determination of the gender at L1 and L2, and there is no sampling error as the sampling ratio is 100%. 
In this case, the manifest aggregation assumption (M1 and M2) that the L2 construct is free of sampling 
error may be reasonable and the assumption that within-group variance represents sampling error might be 
incorrect (leading to biased estimates of contextual effects based on inappropriate correction for sampling 
error for formative constructs). However, based on their simulation study with formative constructs, 
Lüdtke et al. (2008) showed that models based on the assumption of latent aggregation approach were 
appropriate for formative variables when the sampling ratio was low – as in the present investigation -- so 
that there was considerable unreliability due to sampling error. In this case, the latent aggregation models 
(M3 and M4) still provided reasonably unbiased parameter estimates related to the L2 aggregated 
(formative) construct. However, when the sampling ratio approaches 100% -- particularly when the 
number of individuals within each group was small – latent aggregation approaches might overestimate 
sampling error (based on within-group variance) and result in inflated estimates of the contextual effects. 
Although the doubly-latent Model 4 (and manifest-latent M2) are appropriate for purely reflective 
measures, more simulation research along the lines of the Lüdtke et al. (2008; also see Lüdtke, et al., 2009) 
is needed to evaluate their appropriateness for formative measures – particularly when sampling ratios are 
substantial. 

Equality of within and between level loadings. Although not a particular focus of the present 
investigation, the constraint of factorial invariance in terms of L1 and L2 factor loadings is an important 
issue that needs further research. These between-level invariance constraints lead to measurement models 
with the same sets of loadings which in turn will guarantee that ACH on the between level is indeed the 
average ACH in each cluster. This claim becomes tenuous without such invariance constraints. With this 
cross-level invariance, there is a reasonably straight-forward measurement model such that the latent 
variable is a simple decomposition of the within and between components and the between component is 
simply the cluster mean value. Also, as noted earlier, this invariance facilitates the interpretation in 
estimating the BFLPE as the difference between two regression coefficients. Fortunately, there was clear 
support for this cross-level invariance in the present investigation in that goodness of fit indexes that 
control for parsimony were nearly the same for models with and without such constraints. If there is not 
support for this sort of invariance, it might be possible to impose partial invariance in which some of the 
factor loadings for each latent factor are invariant over levels. Having invariance across the two levels 
clearly facilitates interpretations. However, we do not claim that such cross-level invariance is a necessary 
condition for applying multilevel contextual models with multiple indicators, but only that further research 
into alternative solutions is needed when such invariance is not met. We also note that this is not an issue 
for manifest models in which each of the constructs is represented by a single indicator (e.g., Models 1 and 
2). Here, there is an implicit invariance across levels in which all factor loadings fixed to 1.0 which 
provides a common metric at both levels. This is the reason why, for example, results based on within- and 
between-group centering are mathematically equivalent, one solution being a simple algebraic 
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transformation of the other (Raudenbush & Bryk, 2002). Importantly, invariance constraints ensure that 
there is a common metric at both within and between levels and facilitates interpretation. However, in 
actual practice it is common that measurement is not invariant across levels and, indeed, that the whole 
factor structure might be entirely different across levels (e.g., Härnqvist, 1978; Zimprich, Perren & 
Hornung, 2005). Clearly an important area for further research is a better understanding of the implications 
of violations of the assumption of cross-level invariance; what interpretations are appropriate under these 
circumstances and how robust interpretations are to a lack of invariance.  

Effect Sizes Based on Multilevel Contextual Models. Standardized parameter estimates are 
routinely used to summarise the results of single-level multiple regression models of manifest variables 
and SEM latent variable models. The standardized solutions facilitate interpretations of the results, 
comparison of effect sizes associated with different independent variables, and incorporation of results 
from different studies into meta-analyses. However, the problem of how to compute effect sizes is more 
complex for MLMs – particularly for latent variable models with multiple indicators– and apparently has 
not been resolved. Hence, we discuss alternative approaches to the computation for effect sizes for MLMs 
that can be applied to both manifest and latent approaches based on single-indicator or multiple-indicator 
constructs. We also demonstrate how standard errors of alternative effect size measures can be estimated 
for MLMs within the framework developed here. 

Mplus currently does standardisation for a MLM like Model 4 separately for each level - treating 
them almost as multiple (separate) groups. This is reasonable when the researcher wants to evaluate these 
coefficients separately for the within and between levels. However for contextual studies, researchers need 
to consider coefficients between the two levels, so that the default standardized coefficients are not 
particularly useful. It is possible to overcome this limitation by building an appropriate standardisation into 
the model constraints. Although other researchers might choose an alternative standardisation in other 
situations, we discuss three options here.  

Tymms (2004) proposed that the effect size for continuous level-2 predictors in MLMs, which is 
comparable with Cohen’s d (Cohen, 1988), be calculated using the following formula:  

Δ = 2*B∗SDpredictor/σe       (8) 

where Β is the unstandardised regression coefficient in the MLM, SDpredictor is the standard deviation of the 
predictor variable at L2, and σe is the residual standard deviation at L1. The resulting effect size describes 
the difference in the dependent variable between two L2 groups that differ by two standard deviations on 
the predictor variable (see Appendix, Model 8, ES1, for the operationalization of this in Mplus models 
considered here). Alternatively, using the same notation (equation 8), it may be more appropriate to 
operationalize effect size in relation to the total variance of the L1-ASC rather than its residual, σe (see 
operationalization in Model 8, ES2, Appendix). Finally, it might be appropriate to standardize the BFLPE 
estimate with respect to the total (within + between) variance of ASC but only the between variance of 
ACH_B. This is appropriate because the BFLPE coefficients can be interpreted as a multiplier of ACH_B 
in the parameterization when using grand mean centering (see operationalization in Model 8, ES3, 
Appendix). Although these three approaches to effect size can be easily operationalized in relation to each 
of the models considered here, in Model 8 (see Appendix) we illustrate the Mplus syntax for computing 
them for Model 4. Based on these results, the standardized effect sizes (based on the BFLPE = -.358 
reported in Model 4) are: ES1 = -.440, ES2 = -.357, and ES3 = -.350.  

Three operationalisations of effect size all three have the same numerator, but differ in terms of the 
denominator. ES1 has the disadvantage of being in relation to the residual variance of L1 ACH which will 
vary substantially in terms of the other predictor variables included in the analysis. Thus, for example, in a 
longitudinal study in which there is a pretest achievement measure, the residual variance might be expected 
to be very small so that the estimated effect size would be very large relative to the corresponding estimate 
based on a cross-sectional study. This problem is well-known in meta-analyses studies where it is 
recommended that effect sizes should be standardized in relation to total variance (as in ES2) rather than 
residual variance (as in ES1). ES3 extends this logic to include total variance from L1 and L2, and thus is 
the most conservative definition of effect size (although the actual difference between ES2 and ES3 is not 
large in the present investigation). 

Although a full exploration of the issues surrounding standardisation of effect sizes in MLMs and 
the corresponding definitions of effect sizes is clearly beyond the scope of the present investigation, the 
development of appropriate standardized parameter estimates and effect sizes is an important direction for 
further research in MLMs that is particularly relevant to contextual models like those considered here. 
Based on our preliminary evaluation, we suggest that ES2 or ES3 should be used instead of ES1. A 
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particular strength of the approaches taken here is that the various approaches (as well as variations) can 
easily be incorporated into the estimation of the models considered here, and has the advantage of 
providing a standard error using the delta method (Raykov, & Marcoulides, 2004) to test for statistical 
significance and construct confidence intervals around effect size estimates (Thompson, 2002).  

Assumptions of causality and underlying processes. BFLPE studies – and contextual models more 
generally – are largely based on correlational analyses so that causal interpretations should be offered 
tentatively and interpreted cautiously. Here, as with all social science research, it is appropriate to 
hypothesize causal relations but researchers should fully interrogate support for causal hypotheses in 
relation to a construct validity approach (see Marsh, 2007) based on multiple indicators, multiple (mixed) 
methods, multiple experimental designs, and multiple time points as well as testing the generalizability of 
the results across diverse settings. The evidence for construct validity includes the content, response 
processes by participants, internal structure in terms of consistency and factor structure, and convergent 
and discriminant validity in relations with other constructs — including, for example, experimental and 
quasi-experimental manipulations, criterion-related validity, and validity generalisation to relevant and 
similar situations or populations. Whilst stronger inferences about causality are possible in longitudinal, 
quasi-experimental, and true experimental (with random assignment) studies, trying to “prove” causality is 
usually a precarious undertaking. Even in true experimental studies in applied social science disciplines, 
there is typically some ambiguity as the interpretation of what was actually manipulated, how it varies with 
different subgroups within the population, and its relevance to theory and practice. The problems of casual 
interpretations with contextual studies have been discussed extensively in the organisational psychology 
(Bliese, Chan & Ployhart, 2007) and in the social sciences more generally (e.g. Morgan & Winship, 2007). 

Fortunately, there is now a growing body of BFLPE research that addresses many of these 
concerns (see Marsh, 2007; Marsh, Seaton, et al., 2008). Quasi-experimental, longitudinal studies based on 
matching designs as well as statistical controls show that ASC declines when students shift from mixed-
ability schools to academically selective schools over time (based on pre-post comparisons) and in relation 
to students matched on academic ability who continue to attend mixed-ability schools. Extended 
longitudinal studies show that the BFLPE grows stronger the longer students attend a selective school and 
is maintained even two and four years after graduation from high school. Also, there is good support for 
the convergent and discriminant validity of the BFLPE as it is largely limited to academic components of 
self-concept and nearly unrelated to non-academic components of self-concept and to self-esteem. Cross-
national comparisons based on OECD-PISA data from 26 countries shows that the BFLPE has good cross-
national generalizability. Whereas the “third variable” problem is always a threat to contextual studies that 
do not involve random assignment, Marsh, Hau and Craven (2004) argue that this is an unlikely counter-
explanation of BFLPE results in that most potential “third variables” (resources, per student expenditures, 
SES, teacher qualifications, etc) are positively related to L2-ACH, so that controlling for them would 
increase the size of the BFLPE (i.e., the negative effect of L2-ACH).  

In summary, the results of any one contextual study are likely to provide limited basis of support 
for research hypotheses positing causal effects; support for the hypothesis must be examined in relation to 
a broadly conceived construct validity approach. However, models applied here appear to be important in 
more appropriately specifying contextual effect models and facilitating more extensive tests of the 
construct validity of interpretations based on such models.   
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Table 1 

BFLPE Models: Single and Multilevel Models based on Single (manifest) indicators with either 

Manifest or Latent Aggregation (see Figures 1 & 2)       
 

Model 0: Single-level Doubly Manifest 

                   Estimates     S.E.           

ASC on  

 Achieve-Ind (IA)      0.605    0.014    

 Achieve-School (SA)   0.292    0.025    

 Resid Var ASC         0.702    0.014    

R-SQUARE ASC           0.297    0.011    

New/Additional Parametersb 

    BFLPE             -0.313    0.028    

 

Model 1: Multilevel Doubly Manifest      Model 2: Multilevel manifest  

                                         Indicators, Latent Aggregation  

                     Estimates  SE            Estimates  SE   

Within (W) Level                                 

 ASC-W ON ACH-W        0.605    0.014           0.605    0.014                              

 Resid Var ASC_W       0.685    0.013           0.685    0.013                              

Between (B) Level                                 

 ASC-B ON ACH-B        0.301    0.029           0.262    0.033                              

 Resid Var ASC-B       0.017    0.005           0.014    0.005                              

R-SQUARE                                          

 Within ASC            0.288     0.017          0.295    0.017                              

 Between ASC           0.572     0.096          0.515    0.116                              

New/Additional Parameters                               

    BFLPE             -0.304    0.034          -0.343    0.038                

Note. IA=Individual Achievement; SA=School-average Achievement; ASC = Academic Self-concept; 

ACH=Achievement;  BFLPE = big-fish-little-pond effect. For the multilevel models, ASC and ACH have 

separate components for the within (individual student) and between (school) levels. Goodness of Fit: Both 

M0 and M1 are saturated so that df=0 and the fit is perfect. M0: Free Parameters = 4; AIC = 30489; BIC = 

30515; SSA-BIC= 30502; M1: Free Parameters = 5; AIC = 11686; BIC = 11719; SSA-BIC= 11703. M2: 

Free Parameters = 5; AIC = 24235; BIC = 24268; SSA-BIC= 24252.  See Appendix for the MPLUS syntax 

for each model.  
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Table 2     
  Model 3 (Latent-Manifest): Multiple          Model 4 (Doubly-latent): Multiple                 
  Latent Indicators, Manifest Aggregation      Latent indicators, Latent aggregation               

                        Estimates  SE__             Estimates  S.E     

Within Level                                    

    ASC Factor Loadings                           

     Indicator 1         1.000    0.000              1.000    0.000                          

     Indicator 2         0.724    0.016              0.724    0.016                          

     Indicator 3         0.979    0.009              0.979    0.009                          

     Indicator 4         0.845    0.011              0.845    0.011                          

    Ach factor Loadings                           

     Indicator 1         1.000    0.000              1.000    0.000                          

     Indicator 2         0.966    0.009              0.966    0.010                          

     Indicator 3         0.951    0.015              0.952    0.015                          

                                       

    ASC-W on ACH-B       0.624    0.015              0.624    0.015                          

    Var Ach-W            0.711    0.046              0.734    0.048                          

    Resid Var ASC-W      0.551    0.013              0.550    0.013                          

Between (B) Level                               

    ASC-B Factor Loadings                         

     Indicator 1         1.000    0.000              1.000    0.000                          

     Indicator 2         0.724    0.016              0.724    0.016                          

     Indicator 3         0.979    0.009              0.979    0.009                          

     Indicator 4         0.845    0.011              0.845    0.011                          

    Ach-B factor Loadings                         

     Indicator 1         1.000    0.000              1.000    0.000                          

     Indicator 2         0.966    0.009              0.966    0.010                          

     Indicator 3         0.951    0.015              0.952    0.015                          

                                       

    ASC-b ON ACH-b       0.307    0.028              0.266    0.034                          

    Var ACH-b            0.238    0.028              0.208    0.027                          

    Resid Var ASC-b      0.016    0.004              0.013    0.004                          

  R-SQUARE                                 

    Latent ASC-W         0.334    0.019              0.342    0.019                          

    Latent ASC-B         0.589    0.094              0.528    0.115                          

New/Additional Parameters                       

      BFLPE             -0.317    0.033             -0.358    0.040                          

  
____________________________________________________________________________________________________________ 

Note. ACH = Achievement; ASC = Academic Self-concept; BFLPE = big-fish-little-pond effect. There are 
4 indicators for ASC factors (within and between) and 3 indicators for ACH factors (within and between).  
See Appendix for the MPLUS syntax for each model. See Appendix for the MPLUS syntax for each 
model. Goodness of Fit values are Model 3: Chi-Square (31) =  443; CFI = .989, TLI = .984; RMSEA = 
0.053; SRMR-B= 0.030; SRMR-W= 0.016; AIC = 60617; BIC= 60843; SSA-BIC= 60732; Model 4: Chi-
Square (31) =  463; CFI = .988, TLI = .984; RMSEA = 0.054; SRMR-B= 0.049; SRMR-W= 0.023; AIC = 
61898; BIC= 62105; SSA-BIC= 62003. 
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Table 3 
Doubly Latent Model 5 with Random Slopes: Without Latent Interaction (Model 5A) or With 
Latent Interaction (Model 5B)          
                          Model 5A             Model 5B                

                          Estimates  SE.        Estimates  SE.     

Within (W) Level                                  

    ASC-W Factor Loadings                        

     Indicator 1           1.000  0.000          1.000  0.000  

     Indicator 2           0.724  0.016          0.724  0.016  

     Indicator 3           0.980  0.009          0.980  0.009  

     Indicator 4           0.845  0.011          0.845  0.011  

    Ach-W factor Loadings               

     Indicator 1           1.000  0.000          1.000  0.000  

     Indicator 2           0.975  0.011          0.975  0.011  

     Indicator 3           0.986  0.014          0.986  0.014  

     ASC-W on ACH-W       

     ASC-W on IXSMAC      

    Var Ach-W              0.712  0.049          0.711  0.049  

   Resid Var ASC-W         0.546  0.013          0.544  0.013  

Between Level                                

    ASC-B Factor Loadings                      

     Indicator 1           1.000  0.000          1.000  0.000  

     Indicator 2           0.724  0.016          0.724  0.016  

     Indicator 3           0.980  0.009          0.980  0.009  

     Indicator 4           0.845  0.011          0.845  0.011  

    Ach-B factor Loadings                      

     Indicator 1           1.000  0.000          1.000  0.000  

     Indicator 2           0.975  0.011          0.975  0.011  

     Indicator 3           0.986  0.014          0.986  0.014  

 

    ASC-b ON ACH-b         0.292  0.035          0.261  0.034  

    Var ACH-b              0.214  0.027          0.213  0.027  

    Resid Var ASC-b        0.016  0.004          0.015  0.005  

    slope mean             0.632  0.015          0.639  0.015  

    slope variance         0.001  0.001          0.003  0.002  

    slope with ASC-b      -0.008  0.003         -0.006  0.003  

    slope ON ACH-b                               0.118  0.037  

New/Additional Parameters             

      BFLPE               -0.340  0.040         -0.378  0.039  

  
___________________________________________________________________________________________    

  Note. ACH = Achievement; ASC = Academic Self-concept; BFLPE = big-fish-little-pond effect. Slope =  
slope of the latent (within) ASC factor on the latent (within) ACH factor. Slope has a mean (average slope 
over schools) and variance (or residual variance in Model 5B), whilst Model 5B also tests the effect of 
(between) latent achievement on the slope. . See Appendix for the MPLUS syntax for each model. 
Goodness of fit values are: M5A: Free Parms = 27, AIC = 62188; BIC= 62362; SSA-BIC= 62276; HO 
Value = -31067. M5B: Free Parms = 28, AIC = 62176; BIC= 62357; SSA-BIC= 62268; HO Value = -
31060. 
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Table 4 
Doubly-latent Model 5 with the Addition of a L1-Latent Interaction (Model 6:Gender x L1-ACH) 
and a L1-Latent Quadratic Effect (Model 7: L1-ACH x L1-Ach) 
 

                       Model 6               Model 7    

                       Estimates  SE          Estimates  SE     

Within (W) Level                               

  ASC-W Factor Loadings                      

   Indicator 1         1.000    0.000          1.000    0.000   

   Indicator 2         0.724    0.016          0.724    0.016   

   Indicator 3         0.980    0.008          0.980    0.008   

   Indicator 4         0.845    0.011          0.845    0.011   

  Ach-W factor Loadings                      

   Indicator 1         1.000    0.000          1.000    0.000   

   Indicator 2         0.975    0.011          0.975    0.011   

   Indicator 3         0.986    0.014          0.986    0.014   

  ASC-W on ACH-W       0.648    0.040          0.645    0.016   

  ASC-W on SEX         0.009    0.027                           

  ASC-W on SexXACH-W  -0.007    0.023                           

  ASC-W on QuadACH-W                           0.009    0.005   

  Var Ach-W            0.712    0.049          0.712    0.049   

  Resid Var ASC-W      0.548    0.013          0.547    0.013   

Between (B) Level                              

  ASC-B Factor Loadings                      

   Indicator 1         1.000    0.000          1.000    0.000   

   Indicator 2         0.724    0.016          0.724    0.016   

   Indicator 3         0.980    0.008          0.980    0.008   

   Indicator 4         0.845    0.011          0.845    0.011   

  Ach-B factor Loadings                      

   Indicator 1         1.000    0.000          1.000    0.000   

   Indicator 2         0.975    0.011          0.975    0.011   

   Indicator 3         0.986    0.014          0.980    0.014   

 

  ASC-b ON ACH-b       0.258    0.035          0.257    0.035   

  Var ACH-b            0.213    0.026          0.212    0.027   

  Resid Var ASC-b      0.015    0.004          0.015    0.004   

                                               
New/Additional Parameters                    

    BFLPE             -0.390    0.055               -0.389    0.041   
___________________________________________________________________________ 

Note. ACH = Achievement; ASC = Academic Self-concept; BFLPE = big-fish-little-pond effect.. 
SexXACH-W  = Interaction between L1-sex and L1-Ach; QuadACH-W = quadratic component of L1-
ACH. Appendix for the MPLUS syntax for each model. Model 6: No Free Parms = 27, AIC = 62195; 
BIC= 62370; SSA-BIC= 62284; Model 7: Free Parms = 26, AIC = 62190; BIC= 62358; SSA-BIC= 62276. 
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Taxonomy of Contextual Models
Sampling of Persons 

(sampling Error)

Sam
pling of Item

s 
(Measurem

ent Error)

M1: Doubly Manifest•Single manifest 
indicators (one score 
per factor)•manifest aggregation of 
L1 constructs to form 
L2 constructs

M2: Manifest-Latent•Single manifest 
indicators (one 
score per factor)

•latent aggregation 
of L1 constructs to 
form L2 constructs

M3: Latent-Manifest
•Multiple indicators 

(constructs are latent in 
relation to items)

•Manifest Aggregation 
of multiple L1 
indicators to form 
multiple L2 indicators

M4: Doubly Latent
•Multiple indicators 

(constructs are latent 
in relation to items)

• Latent Aggregation of 
multiple L1 indicators to 
form multiple L2 indicators

No                 Yes

No                    Yes

 
 
 
 

Figure 1. 2 x 2 taxonomy of contextual models designed to control for measurement error 
(associated with sampling of items) and for sampling error (associated with sampling of people) 
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Figure 2A.. Four multilevel latent contextual models comprising the 2 (latent or manifest in relation to sampling items and correction for 
measurement error) x 2 (latent or manifest in relation to sampling students and correction for sampling error) taxonomy (see Figure 1).  
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Figure 2B.. Model 5A (random slopes [s], school-to-school variation in the effect of individual achievement on individual academic self-concept) and 
Model 5B (slope predictor; effect of latent school-level achievement on slope, a cross-level interaction).  
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Figure 2C.. Model 6 (Sex and its interaction with latent individual achievement added to Model 4) and Model 6 (quadratic effect of latent individual 
achievement added to Model 4) 
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Figure 2A.. Four multilevel latent contextual models comprising the 2 (latent or manifest in relation to sampling items and correction for 
measurement error) x 2 (latent or manifest in relation to sampling students and correction for sampling error) taxonomy (see Figure 1).  

Figure 2B.. Model 5A (random slopes [s], school-to-school variation in the effect of individual achievement on individual academic self-concept) and 
Model 5B (slope predictor; effect of latent school-level achievement on slope, a cross-level interaction).  

Figure 2C.. Model 6 (Sex and its interaction with latent individual achievement added to Model 4) and Model 6 (quadratic effect of latent individual 
achievement added to Model 4) 

IA = Individual achievement (IA1 – IA3 represent the multiple indicators of IA); SA=school-average achievement (SA1 – SA3 represent the multiple indicators of 
IA); ASC = Academic self-concept (ASC1 – ASC4 represent the multiple indicators of ASC); W = within (student level); B = between (school level). Straight (one 
directional) arrows represent paths, whereas curved (double-headed) arrows represent covariation. Circles indicate latent variables; Squares indicate observed 
(manifest) variables. Within and between levels are separated by a dashed line. A dot at the end of the within (Level 1) regression (either from dependent on 
independent variables or from observed variables on latent factors) indicates that the corresponding intercept is random at the between level, representing the latent 
aggregation process. Thus, both single and multiple indicators at the between level (level 2) are represented by squares if they are manifest (based on school-
average values that are formed outside of the model) and circles if they are latent (formed through the latent aggregation process as part of the model estimation 
process). All between-level random intercepts are represented as latent variables. Interaction terms are represented by paths from the two interacting variables 
joining at a dot and one path leading from the dot representing the interaction effect leading to the dependent variable. 
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Appendix 
MPLUS Setup Files for 10 Models in the Present Investigation 

 
TITLE: Model 0 Single-level model with manifest L1 and L2 variables; 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht;   
USEVAR ARE 
  zmsct s_macht gr_math ; 
 
DEFINE: 
  gr_math = zmacht - s_macht; 
ANALYSIS: Type is general ; 
MODEL: 
  zmsct on gr_math (ind_ach); 
  zmsct on s_macht (Sch_Ach); 
 
MODEL CONSTRAINT: 
  new(bflpe); 
  bflpe = Sch_Ach - ind_ach; 
 
OUTPUT: sampstat stand tech1; 
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TITLE: MODEL 1 Doublely Manifest Multilevel Model  
with manifest constructs and manifest aggregation; 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsct zmacht s_macht; 
  cluster = idsch; 
  within = zmacht ; 
  between = s_macht; 
  centering = groupmean(zmacht); 
  missing are all (-99); 
ANALYSIS: Type is twolevel ; 
MODEL: 
 
  %within% 
  zmsct on zmacht (b_within); 
 
  %between% 
  zmsct on s_macht (b_betwn); 
 
MODEL CONSTRAINT: 
  new(bflpe); 
  bflpe = b_betwn - b_within; 
OUTPUT: sampstat stand tech1; 
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TITLE: model 3 Latent-manifest model with Latent constructs  
based on multiple indicators, but manifest aggregation; 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsc1 zmsc2 zmsc3 
  zmsc4 zmach1 zmach2 zmach3 
  s_mach1 s_mach2  s_mach3; 
  cluster = idsch; 
  within = zmach1 zmach2 zmach3; 
  between = s_mach1 s_mach2  s_mach3; 
  centering = groupmean(zmach1 zmach2 zmach3); 
  missing are all (-99); 
  ANALYSIS: Type is twolevel ; algorithm=em; mconv=1000; 
  ANALYSIS: Type is twolevel ; algorithm=em; mconv=1000; 
  MODEL: 
    %within% 
    MSC_W by zmsc1 (1) ; 
    MSC_W by zmsc2 (2); 
    MSC_W by zmsc3 (3) ; 
    MSC_W by zmsc4 (4); 
 
    MACH_W by zmach1 (5) ; 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7) ; 
 
     MSC_W on MACH_W (b_within); 
 
    %between% 
    MSC_B by zmsc1 (1) ; 
    MSC_B by zmsc2 (2); 
    MSC_B by zmsc3 (3) ; 
    MSC_B by zmsc4 (4); 
 
    MACH_B by s_mach1 (5) ; 
    MACH_B by s_mach2 (6); 
    MACH_B by s_mach3 (7) ; 
 
     MSC_B on MACH_B (b_between); 
 
MODEL CONSTRAINT: 
  new(bflpe); 
    bflpe = b_between - b_within; 
 
OUTPUT: sampstat stand tech1; 
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TITLE: Model 3 Manifest-Lantent Model with manifest Single-indicators 
 of each construct, but latent aggregation from L1 to L2.; 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsct zmacht; 
  cluster = idsch; 
 
ANALYSIS: Type is twolevel ; 
MODEL: 
 
  %within% 
  zmsct on zmacht (b_within); 
 
  %between% 
  zmsct on zmacht (b_betwn); 
 
MODEL CONSTRAINT: 
 
  new(bflpe); 
  bflpe = b_betwn - b_within; 
OUTPUT: sampstat stand tech1; 
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TITLE: Model 4 Doubly-latent MLM with latent constructs  
based on multiple indicators and latent aggregation; 
  mult indicators; no rand slopes;  
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsc1 zmsc2 zmsc3 
  zmsc4 zmach1 zmach2 zmach3; 
  cluster = idsch; 
  centering = grandmean(zmach1 zmach2 zmach3); 
  missing are all (-99); 
ANALYSIS: Type is twolevel ; algorithm=em; mconv=1000; 
  MODEL: 
    %within% 
    MSC_W by zmsc1 (1); 
    MSC_W by  zmsc2 (2); 
    MSC_W by  zmsc3 (3); 
    MSC_W by  zmsc4 (4); 
    MACH_W by zmach1 (5); 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7); 
    MSC_W on MACH_W (b_within); 
 
    %between% 
     MSC_B by zmsc1 (1); 
     MSC_B by  zmsc2 (2); 
     MSC_B by  zmsc3 (3); 
     MSC_B by  zmsc4 (4); 
     MACH_B by zmach1 (5) ; 
     MACH_B by zmach2 (6); 
     MACH_B by zmach3 (7); 
 
     MSC_B on MACH_B (b_betwn); 
 
    MODEL CONSTRAINT: 
    new(bflpe); 
    bflpe = b_betwn - b_within; 
OUTPUT: sampstat stand tech1; 
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    TITLE: Model 5A Doubly-latent MLM (Model 5) with random slopes 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsc1 zmsc2 zmsc3 
  zmsc4 zmach1 zmach2 zmach3; 
  cluster = idsch; 
  missing are all (-99); 
  ANALYSIS:Type is twolevel random; algorithm=integration; integration=10; 
      GHFIML=OFF; 
 
      %within% 
  MODEL: 
  %within% 
    MSC_W by zmsc1 (1); 
    MSC_W by  zmsc2 (2); 
    MSC_W by  zmsc3 (3); 
    MSC_W by  zmsc4 (4); 
    MACH_W by zmach1 (5); 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7); 
 
      s | MSC_W on MACH_W; 
 
    %between% 
     MSC_B by zmsc1 (1); 
     MSC_B by  zmsc2 (2); 
     MSC_B by  zmsc3 (3); 
     MSC_B by  zmsc4 (4); 
     MACH_B by zmach1 (5) ; 
     MACH_B by zmach2 (6); 
     MACH_B by zmach3 (7); 
 
      [s] (b_within); 
 
      MSC_B on MACH_B (b_betwn); 
 
    MODEL CONSTRAINT: 
 
      new(bflpe); 
      bflpe = b_betwn - b_within; 
    OUTPUT: sampstat tech1; !stand 
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    TITLE: Model 5B Doubly-latent MLM (Model 4) with random slopes and 
Cross-level latent interaction (s on MACH_B); 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsc1 zmsc2 zmsc3 
  zmsc4 zmach1 zmach2 zmach3; 
  cluster = idsch; 
  missing are all (-99); 
  ANALYSIS:Type is twolevel random; algorithm=integration; integration=10; 
      GHFIML=OFF; 
 
      %within% 
  MODEL: 
  %within% 
    MSC_W by zmsc1 (1); 
    MSC_W by  zmsc2 (2); 
    MSC_W by  zmsc3 (3); 
    MSC_W by  zmsc4 (4); 
    MACH_W by zmach1 (5); 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7); 
 
      s | MSC_W on MACH_W; 
 
    %between% 
     MSC_B by zmsc1 (1); 
     MSC_B by  zmsc2 (2); 
     MSC_B by  zmsc3 (3); 
     MSC_B by  zmsc4 (4); 
     MACH_B by zmach1 (5) ; 
     MACH_B by zmach2 (6); 
     MACH_B by zmach3 (7); 
       s on MACH_B; 
      [s] (b_within); 
 
      MSC_B on MACH_B (b_betwn); 
 
    MODEL CONSTRAINT: 
 
      new(bflpe); 
      bflpe = b_betwn - b_within; 
    OUTPUT: sampstat tech1; !stand 
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TITLE: Model 6 Doubly-latent model (Model 4) with the addition  
Of L1-Gender and its latent interaction with L1-achievement; 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsc1 zmsc2 zmsc3 sex 
  zmsc4 zmach1 zmach2 zmach3; 
  cluster = idsch; 
WITHIN ARE sex; 
ANALYSIS: Type is twolevel random; algorithm=integration; integration=10; 
 GHFIML=OFF; 
MODEL: 
    %within% 
    MSC_W by zmsc1 (1); 
    MSC_W by  zmsc2 (2); 
    MSC_W by  zmsc3 (3); 
    MSC_W by  zmsc4 (4); 
    MACH_W by zmach1 (5); 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7); 
    ISxXIMac | MACH_W xwith sex; 
    MSC_W  on MACH_W  sex ISxXIMac; 
  MSC_W on MACH_W (b_within); 
  %between% 
     MSC_B by zmsc1 (1); 
     MSC_B by  zmsc2 (2); 
     MSC_B by  zmsc3 (3); 
     MSC_B by  zmsc4 (4); 
     MACH_B by zmach1 (5) ; 
     MACH_B by zmach2 (6); 
     MACH_B by zmach3 (7);  
  MSC_B on MACH_B (b_betwn); 
MODEL CONSTRAINT: 
  new(bflpe); 
  bflpe = b_betwn - b_within; 
OUTPUT: sampstat stand tech1; 
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TITLE: Model 7 Doubly-latent model (Model 4) with the addition  
Of a latent quadratic component of L1-achievement; 
DATA: File is bflpe.dat; 
VARIABLE: Names are 
 idstud idsch sex szweig1 
 zmsc1 zmsc2 zmsc3 zmsc4  
 zmach1 zmach2 zmach3 
 zmsct zmacht 
 s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
    s_mach1 s_mach2  s_mach3 s_macht; 
USEVAR ARE 
  zmsc1 zmsc2 zmsc3 
  zmsc4 zmach1 zmach2 zmach3; 
  cluster = idsch; 
  missing are all (-99); 
  ANALYSIS:Type is twolevel random; 
  algorithm=integration em;integration=5;mconv=1000; GHFIML=OFF; 
  MODEL: 
    %within% 
    MSC_W by zmsc1 (1); 
    MSC_W by  zmsc2 (2); 
    MSC_W by  zmsc3 (3); 
    MSC_W by  zmsc4 (4); 
    MACH_W by zmach1 (5); 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7); 
      L1MACSQ | MACH_W xwith MACH_W; 
      MSC_W  on MACH_W  L1MACSQ; 
      MSC_W on MACH_W (b_within); 
    %between% 
     MSC_B by zmsc1 (1); 
     MSC_B by  zmsc2 (2); 
     MSC_B by  zmsc3 (3); 
     MSC_B by  zmsc4 (4); 
     MACH_B by zmach1 (5) ; 
     MACH_B by zmach2 (6); 
     MACH_B by zmach3 (7); 
     MSC_B on MACH_B (b_betwn); 
MODEL CONSTRAINT: 
  new(bflpe); 
  bflpe = b_betwn - b_within; 
OUTPUT: sampstat stand tech1; 
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TITLE: Model 8 (Model 5 with alternative paramterizations of effect size); 
  DATA: File is bflpe.dat; 
  VARIABLE: Names are 
   idstud idsch sex szweig1 
   zmsc1 zmsc2 zmsc3 zmsc4 
   zmach1 zmach2 zmach3 
   zmsct zmacht 
   s_msc1 s_msc2 s_msc3 s_msc4 s_msct 
      s_mach1 s_mach2  s_mach3 s_macht; 
  USEVAR ARE 
    zmsc1 zmsc2 zmsc3 
    zmsc4 zmach1 zmach2 zmach3; 
    cluster = idsch; 
  ANALYSIS: Type is twolevel ; algorithm=em; mconv=1000; GHFIML=OFF; 
  MODEL: 
    %within% 
    MSC_W by zmsc1 (1); 
    MSC_W by  zmsc2 (2); 
    MSC_W by  zmsc3 (3); 
    MSC_W by  zmsc4 (4); 
    MACH_W by zmach1 (5); 
    MACH_W by zmach2 (6); 
    MACH_W by zmach3 (7); 
    MSC_W on MACH_W (b_within); 
    MACH_W (Psi_W); 
    MSC_W (Theta_W); 
    %between% 
     MSC_B by zmsc1 (1); 
     MSC_B by  zmsc2 (2); 
     MSC_B by  zmsc3 (3); 
     MSC_B by  zmsc4 (4); 
     MACH_B by zmach1 (5) ; 
     MACH_B by zmach2 (6); 
     MACH_B by zmach3 (7); 
     MACH_B (Psi_B); 
     MSC_B (Theta_B); 
     MSC_B on MACH_B (b_betwn); 
    MODEL CONSTRAINT: 
    new(bflpe); 
    bflpe = b_betwn - b_within; 
      new(st-bflpe); 
   st-bflpe = bflpe*(sqrt(Psi_B) 
    /sqrt(Psi_B*b_betwn**2 + Theta_B + Psi_W*b_within**2 + Theta_W)); 
    new(ES2); 
    Es2= bflpe*(2*sqrt(Psi_B)/sqrt(Psi_W*b_within**2 + Theta_W)); 
   new(ES1); 
   ES1 = bflpe*(2*sqrt(Psi_B) /sqrt(Theta_W)); 
  OUTPUT: residual sampstat stand tech1 MODINDICES  tech4 ; 
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Figure 1. Path Diagrams For Models 1 – 10 (also see Appendix) 

Schematic path diagrams for 10 alternative models of the Big-fish-little-pond-effect.  

IA = Individual achievement (IA1 – IA3 represent the multiple indicators of IA); SA=school-average 

achievement (SA1 – SA3 represent the multiple indicators of IA); ASC = Academic self-concept (ASC1 – 

ASC4 represent the multiple indicators of ASC); W = within (student level); B = between (school level).  

Straight (one directional) arrows represent paths, whereas curved (double-headed) arrows represent 

covariation. Circles indicate latent variables; Squares indicate observed (manifest) variables. Within and 

between levels are separated by a dashed line. A dot at the end of the within (Level 1) regression (either 

from dependent on independent variables or from observed variables on latent factors) indicates that the 

corresponding intercept is random at the between level, representing the latent aggregation process. Thus, 

both single and multiple indicators at the between level (level 2) are represented by squares if they are 

manifest (based on school-average values that are formed outside of the model) and circles if they are 

latent (formed through the latent aggregation process as part of the model estimation process). All 

between-level random intercepts are represented as latent variables. Interaction terms are represented by 

paths from the two interacting variables joining at a dot and one path leading from the dot representing the 

interaction effect leading to the dependent variable (Models 8 – 10). 
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